Possibility of Undifferentiated Human Thigh Adipose Stem Cells Differentiating into Functional Hepatocytes
نویسندگان
چکیده
BACKGROUND This study aimed to investigate the possibility of isolating mesenchymal stem cells (MSCs) from human thigh adipose tissue and the ability of human thigh adipose stem cells (HTASCs) to differentiate into hepatocytes. METHODS The adipose-derived stem cells (ADSCs) were isolated from thigh adipose tissue. Growth factors, cytokines, and hormones were added to the collagen coated dishes to induce the undifferentiated HTASCs to differentiate into hepatocyte-like cells. To confirm the experimental results, the expression of hepatocyte-specific markers on undifferentiated and differentiated HTASCs was analyzed using reverse transcription polymerase chain reaction and immunocytochemical staining. Differentiation efficiency was evaluated using functional tests such as periodic acid schiff (PAS) staining and detection of the albumin secretion level using enzyme-linked immunosorbent assay (ELISA). RESULTS The majority of the undifferentiated HTASCs were changed into a more polygonal shape showing tight interactions between the cells. The differentiated HTASCs up-regulated mRNA of hepatocyte markers. Immunocytochemical analysis showed that they were intensely stained with anti-albumin antibody compared with undifferentiated HTASCs. PAS staining showed that HTASCs submitted to the hepatocyte differentiation protocol were able to more specifically store glycogen than undifferentiated HTASCs, displaying a purple color in the cytoplasm of the differentiated HTASCs. ELISA analyses showed that differentiated HTASCs could secrete albumin, which is one of the hepatocyte markers. CONCLUSIONS MSCs were islolated from human thigh adipose tissue differentiate to heapatocytes. The source of ADSCs is not only abundant abdominal adipose tissue, but also thigh adipose tissue for cell therapy in liver regeneration and tissue regeneration.
منابع مشابه
Trans-differentiation of the Adipose Tissue-Derived Stem Cells into Neuron-Like Cells Expressing Neurotrophins by Selegiline
Background: Adult stem cells (ASC) are undifferentiated cells found throughout the body. These cells are promising tools for cell replacement therapy in neurodegenerative disease. Adipose tissue is the most abundant and accessible source of ASC. This study was conducted to evaluate effect of selegiline on differentiation of adipose-derived stem cells (ADSC) into functional neuron-like cells (NL...
متن کاملEffects of RF-EMF Exposure from GSM Mobile Phones on Proliferation Rate of Human Adipose-derived Stem Cells: An In-vitro Study
Background:As the use of mobile phones is increasing, public concern about the harmful effects of radiation emitted by these devices is also growing. In addition, protection questions and biological effects are among growing concerns which have remained largely unanswered. Stem cells are useful models to assess the effects of radiofrequency electromagnetic fields (RF-EMF) on other cell lines. S...
متن کاملDifferentiation of Mesenchymal Stem Cells Derived From Human Adipose Tissue into Cholinergic-like Cells: In Vitro Study
Introduction: Cholinergic-associated diseases currently constitute a significant cause of neurological and neurodegenerative disabilities. As the drugs are not efficient in improving the suffered tissues, stem cell treatment is considered an effective strategy for substituting the lost cells. Methods: In the current study, we set out to investigate the differentiation properties of human adip...
متن کاملDevelopment of Simple Protocol for Generation of Functionally Active Hepatocyte-like Cells from Human Adipose Tissue-derived Stem Cells
Background and Aims: Human adipose tissue-derived stem cells (hASCs) are considered as an attractive source of regenerative stem cells, mainly because of their higher proliferation rate, more accessibility and hepatocyte like properties as compared to mesenchymal stem cells isolated from other tissues. Numerous studies have described the beneficial use of adipose tissue-derived stem cells for g...
متن کاملDifferentiation of human embryonic stem cells into neurons
Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...
متن کامل